Symmetric low-rank representation for subspace clustering

نویسندگان

  • Jie Chen
  • Haixian Zhang
  • Hua Mao
  • Yongsheng Sang
  • Zhang Yi
چکیده

We propose a symmetric low-rank representation (SLRR) method for subspace clustering, which assumes that a data set is approximately drawn from the union of multiple subspaces. The proposed technique can reveal the membership of multiple subspaces through the self-expressiveness property of the data. In particular, the SLRR method considers a collaborative representation combined with low-rank matrix recovery techniques as a low-rank representation to learn a symmetric low-rank representation, which preserves the subspace structures of high-dimensional data. In contrast to performing iterative singular value decomposition in some existing low-rank representation based algorithms, the symmetric low-rank representation in the SLRR method can be calculated as a closed form solution by solving the symmetric low-rank optimization problem. By making use of the angular information of the principal directions of the symmetric low-rank representation, an affinity graph matrix is constructed for spectral clustering. Extensive experimental results show that it outperforms state-of-the-art subspace clustering algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subspace clustering using a symmetric low-rank representation

In this paper, we propose a low-rank representation with symmetric constraint (LRRSC) method for robust subspace clustering. Given a collection of data points approximately drawn from multiple subspaces, the proposed technique can simultaneously recover the dimension and members of each subspace. LRRSC extends the original low-rank representation algorithm by integrating a symmetric constraint ...

متن کامل

Low Rank Representation on Grassmann Manifolds: An Extrinsic Perspective

Many computer vision algorithms employ subspace models to represent data. The Low-rank representation (LRR) has been successfully applied in subspace clustering for which data are clustered according to their subspace structures. The possibility of extending LRR on Grassmann manifold is explored in this paper. Rather than directly embedding Grassmann manifold into a symmetric matrix space, an e...

متن کامل

Laplacian regularized low rank subspace clustering

The problem of fitting a union of subspaces to a collection of data points drawn from multiple subspaces is considered in this paper. In the traditional low rank representation model, the dictionary used to represent the data points is chosen as the data points themselves and thus the dictionary is corrupted with noise. This problem is solved in the low rank subspace clustering model which deco...

متن کامل

Subspace clustering based on low rank representation and weighted nuclear norm minimization

Subspace clustering refers to the problem of segmenting a set of data points approximately drawn from a union of multiple linear subspaces. Aiming at the subspace clustering problem, various subspace clustering algorithms have been proposed and low rank representation based subspace clustering is a very promising and efficient subspace clustering algorithm. Low rank representation method seeks ...

متن کامل

Tensor Sparse and Low-Rank based Submodule Clustering Method for Multi-way Data

A new submodule clustering method via sparse and lowrank representation for multi-way data is proposed in this paper. Instead of reshaping multi-way data into vectors, this method maintains their natural orders to preserve data intrinsic structures, e.g., image data kept as matrices. To implement clustering, the multi-way data, viewed as tensors, are represented by the proposed tensor sparse an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 173  شماره 

صفحات  -

تاریخ انتشار 2016